News

  • Pressrelease-Teaserfig-Bachmann-2800x2100-96-1920x1080

    09 May 2022

    A ‘fast lane’ for electrons

    The study of ultra-pure materials still has many ways to surprise and delight! For delafossite metals it was shown that wires sculpted from the same single crystal have very different resistivities depending on the angle at which they are cut. From the fundamental physics point of view, the laws of bulk resistivity are being broken.

  • Adrianapalffy-Buss-Fotobilderstolz-1920x1980

    13 Apr 2022

    Focus on quantum optics: X-ray physicist holds new professorship at JMU Würzburg

    Adriana Pálffy-Buß has been appointed to the new W2 professorship for Theoretical Quantum Information and Quantum Optics at the University of Würzburg. She is an expert in the new research field of X-ray quantum optics.

  • 20220310-Heinzmaierleibnitzpreis-Fototobiasritz

    10 Mar 2022

    Dresden physicist belongs to the best early career scientists in Germany

    Dr. Tobias Meng is awarded the Heinz Maier-Leibnitz Prize 2022 by the Deutsche Forschungsgemeinschaft and the Federal Ministry for Education and Research. This Prize is considered Germany’s most important award for early career researchers, and is endowed with 20,000 Euros.

  • Kagome-Metalle0003-Urheberjo-Rgbandmann-1920x1080

    11 Feb 2022

    Electron conspiracy in a Japanese lattice pattern: kagome metals baffle science

    The special structure of the atomic lattice of potassium-vanadium-antimony leads to an extraordinary combination of outstanding quantum properties, which have now been demonstrated for the first time and could enable a completely new type of superconductivity. Prof. Ronny Thomale, Würzburg researcher of the Cluster of Excellence ct.qmat, predicted such quantum effects theoretically already ten years ago. The latest experimental results have been published in the journal Nature.

  • Illustration-Rgb-Exzitonen-Rgb-Urheber-Jo-Rg-Bandmann-Ct-Qmat-1920x1080px

    09 Dec 2021

    „Crazy“ light emitters: Physicists see an unusual quantum phenomenon

    Scientists of the Cluster of Excellence ct.qmat have experimentally discovered an unusual quantum phenomenon for the motion of luminescent electronic quasiparticles in atomically-thin semiconductors. The results were published in the Physical Review Letters journal.

  • Claudia-Felser-Portraet-Foto-Sven-Doering-Agentur-Focus-1920x1080

    06 Dec 2021

    Claudia Felser receives Max Born Prize

    Prof. Claudia Felser, Director at the Max Planck Institute for Chemical Physics of Solids Dresden and principal investigator of the Cluster of Excellence ct.qmat, will be awarded the Max Born Prize 2022 for her outstanding scientific contributions to physics.

  • Ctqmat-Laser-Illustrationchristiankroneck-1920x1080

    24 Sep 2021

    As big as a grain of sand: First topological vertical cavity laser arrays

    Israeli and German researchers of the Cluster of Excellence ct.qmat have developed a way to force an array of vertical cavity lasers to act together as a single laser.The findings were presented in the journal Science.

  • Dreieckigehonigwaben-Abbildungctqmat

    14 Sep 2021

    Triangular Honeycombs: Physicists design novel quantum material

    Researchers from the Cluster of Excellence ct.qmat have recently conceived and realized a new quantum material. The research results have appeared in the journal Nature Communications.

  • Portrait-Alexey-Chernikov-Prio1-Dsc08466-Foto-Tobias-Ritz-1920x1080

    08 Sep 2021

    Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible

    Alexey Chernikov was appointed the new W3 professor of Ultrafast Microscopy and Photonics established by the Cluster of Excellence ct.qmat. The 38-year-old scientist pursues the goal to make ultrafast quantum mechanical quasiparticles visible in atomically thin nanocrystals.

  • Bauanleitungfuerquantenmaterialien-1920x1080

    02 Jul 2021

    "Construction manual" for quantum materials

    Physicists from the Würzburg-Dresden Cluster of Excellence ct.qmat have discovered a minimum distance at which electrons in wires made of quantum materials must flow in order to conduct electricity in a dissipationless manner. The research results have been published in the journal Physical Review Letters.

  • Epo20-Leo-0209-1920x1080

    18 Jun 2021

    Karl Leo receives the European Inventor Award 2021 in the “Lifetime Achievement” category

    Dresden physicist Prof. Karl Leo is honored with the European Inventor of the Year 2021 in the “Lifetime Achievement” category. Leo is one of the 25 principal investigators of the Cluster of Excellence ct.qmat, where he primarily researches semiconductor-based topological photonics.

  • Pressebild-Detail-Topolektrischeschaltkreise-Fotolukasziegler-1920x1080

    31 May 2021

    Topolectrical circuits: A new direction of topological research is ready for take off

    Through a recently developed experimental platform, topological matter can be realized in a fast, cost efficient, and versatile way. It was only about two years ago that researchers of the Cluster of Excellence ct.qmat realized "Topolectric Circuits" and did important pioneering work on their conceptualization for synthetic topological matter. Another breakthrough has now been achieved by the team led by Würzburg physicist Prof. Dr. Ronny Thomale.

Our website uses cookies and Matomo to guarantee you the best possible user experience. You can find more information in our Privacy Policy.