Interlayer exciton valley polarization dynamics in large magnetic fields

Johannes Holler, Malte Selig, Michael Kempf, Jonas Zipfel, Philipp Nagler, Manuel Katzer, Florian Katsch, Mariana V. Ballottin, Anatolie A. Mitioglu, Alexey Chernikov, Peter C. M. Christianen, Christian Schüller, Andreas Knorr, and Tobias Korn
Phys. Rev. B 105, 085303 – Published 9 February 2022
PDFHTMLExport Citation

Abstract

In van der Waals heterostructures consisting of stacked MoSe2 and WSe2 monolayers, optically bright interlayer excitons can be observed when the constituent layers are crystallographically aligned. The symmetry of the monolayers allows for two different types of alignment, in which the momentum-direct interlayer transitions are either valley conserving (R-type alignment) or change the valley index (H-type antialignment). Here, we study the valley polarization dynamics of interlayer excitons in magnetic fields up to 30 T by time-resolved photoluminescence. For all interlayer exciton types, we find a finite initial photoluminescence circular degree of polarization after unpolarized excitation in applied magnetic fields. For interlayer excitons in H-type heterostructures, we observe a systematic increase of the photoluminescence circular degree of polarization with time in applied magnetic fields, which saturates at values close to unity for the largest fields. By contrast, for interlayer excitons in R-type heterostructures, the photoluminescence circular degree of polarization shows a decrease and a zero crossing before saturating with opposite polarization. This unintuitive behavior can be explained by a model considering the different interlayer exciton states in H- and R-type heterostructures and their selection rules coupling photoluminescence helicity and valley polarization.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 November 2021
  • Revised 25 January 2022
  • Accepted 26 January 2022

DOI:https://doi.org/10.1103/PhysRevB.105.085303

©2022 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Johannes Holler1, Malte Selig2, Michael Kempf3, Jonas Zipfel1,4, Philipp Nagler1, Manuel Katzer2, Florian Katsch2, Mariana V. Ballottin5, Anatolie A. Mitioglu5, Alexey Chernikov1,6, Peter C. M. Christianen5, Christian Schüller1, Andreas Knorr2, and Tobias Korn3,*

  • 1Institut für Experimentelle und Angewandte Physik, Universität Regensburg, 93040 Regensburg, Germany
  • 2Institut für Theoretische Physik, Technische Universität Berlin, 10587 Berlin, Germany
  • 3Institut für Physik, Universität Rostock, 18059 Rostock, Germany
  • 4Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
  • 5High Field Magnet Laboratory (HFML-EMFL), Radboud University, 6525 ED Nijmegen, Netherlands
  • 6Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany

  • *tobias.korn@uni-rostock.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 8 — 15 February 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×