Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bosonic condensation of exciton–polaritons in an atomically thin crystal

A Publisher Correction to this article was published on 14 May 2021

This article has been updated

Abstract

The emergence of two-dimensional crystals has revolutionized modern solid-state physics. From a fundamental point of view, the enhancement of charge carrier correlations has sparked much research activity in the transport and quantum optics communities. One of the most intriguing effects, in this regard, is the bosonic condensation and spontaneous coherence of many-particle complexes. Here we find compelling evidence of bosonic condensation of exciton–polaritons emerging from an atomically thin crystal of MoSe2 embedded in a dielectric microcavity under optical pumping at cryogenic temperatures. The formation of the condensate manifests itself in a sudden increase of luminescence intensity in a threshold-like manner, and a notable spin-polarizability in an externally applied magnetic field. Spatial coherence is mapped out via highly resolved real-space interferometry, revealing a spatially extended condensate. Our device represents a decisive step towards the implementation of coherent light-sources based on atomically thin crystals, as well as non-linear, valleytronic coherent devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample structure and map.
Fig. 2: Optical properties of TMDC polaritons.
Fig. 3: Non-linear polariton emission and emission intensity versus pump power.
Fig. 4: First-order autocorrelation measurement of the polariton condensate.
Fig. 5: Dispersion relation and circular degree of polarization under strong magnetic fields.

Similar content being viewed by others

Data availability

The experimental data that support the findings of this study are available in figshare with the identifier https://doi.org/10.6084/m9.figshare.14342471.

Change history

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  CAS  Google Scholar 

  2. Ketterle, W. & van Druten, N. J. Bose–Einstein condensation of a finite number of particles trapped in one or three dimensions. Phys. Rev. A 54, 656 (1996).

    Article  CAS  Google Scholar 

  3. Ketterle, W. Nobel lecture: when atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).

    Article  CAS  Google Scholar 

  4. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  5. Imamoḡlu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).

    Article  Google Scholar 

  6. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    Article  CAS  Google Scholar 

  7. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  8. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  CAS  Google Scholar 

  9. Schneider, C., Glazov, M. M., Korn, T., Höfling, S. & Urbaszek, B. Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat. Commun. 9, 2695 (2018).

    Article  Google Scholar 

  10. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  CAS  Google Scholar 

  11. Lundt, N. et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 7, 13328 (2016).

    Article  CAS  Google Scholar 

  12. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon 9, 30–34 (2015).

    Article  CAS  Google Scholar 

  13. Flatten, L. C. et al. Room-temperature exciton-polaritons with two-dimensional WS2. Sci. Rep. 6, 33134 (2016).

    Article  CAS  Google Scholar 

  14. Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).

    Article  CAS  Google Scholar 

  15. Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).

    Article  CAS  Google Scholar 

  16. Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon 11, 497–501 (2017).

    Article  CAS  Google Scholar 

  17. Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 2269 (2021).

    Article  CAS  Google Scholar 

  18. Stepanov, P. et al. Exciton–exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).

    Article  CAS  Google Scholar 

  19. Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

    Article  CAS  Google Scholar 

  20. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  CAS  Google Scholar 

  21. Malpuech, G., Kavokin, A., Di Carlo, A. & Baumberg, J. J. Polariton lasing by exciton-electron scattering in semiconductor microcavities. Phys. Rev. B 65, 153310 (2002).

    Article  Google Scholar 

  22. Bajoni, D. et al. Dynamics of microcavity polaritons in the presence of an electron gas. Phys. Rev. B 73, 205344 (2006).

    Article  Google Scholar 

  23. Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. X 10, 021011 (2020).

    CAS  Google Scholar 

  24. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  CAS  Google Scholar 

  25. Richard, M., Kasprzak, J., Romestain, R., André, R. & Dang, L. S. Spontaneous coherent phase transition of polaritons in CdTe microcavities. Phys. Rev. Lett. 94, 187401 (2005).

    Article  Google Scholar 

  26. Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 9, 4797 (2018).

    Article  CAS  Google Scholar 

  27. Kulakovskii, V. D. et al. Bose–Einstein condensation of exciton polaritons in high-Q planar microcavities with GaAs quantum wells. JETP Lett. 92, 595–599 (2010).

    Article  Google Scholar 

  28. El Daif, O. et al. Nonlinear relaxation of zero-dimension-trapped microcavity polaritons. Appl. Phys. Lett. 92, 081910 (2008).

    Article  Google Scholar 

  29. Adiyatullin, A. F. et al. Periodic squeezing in a polariton Josephson junction. Nat. Commun. 8, 1329 (2017).

    Article  Google Scholar 

  30. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  CAS  Google Scholar 

  31. Jakubczyk, T. et al. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett. 16, 5333–5339 (2016).

    Article  CAS  Google Scholar 

  32. Daskalakis, K. S., Maier, S. A. & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015).

    Article  CAS  Google Scholar 

  33. De Giorgi, M. et al. Interaction and coherence of a plasmon-exciton polariton condensate. ACS Photonics 5, 3666–3672 (2018).

    Article  Google Scholar 

  34. Yakovlev, D. R. et al. Combined exciton-cyclotron resonance in quantum well structures. Phys. Rev. Lett. 79, 3974–3977 (1997).

    Article  CAS  Google Scholar 

  35. Koperski, M. et al. Orbital, spin and valley contributions to Zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Mater. 6, 015001 (2018).

    Article  Google Scholar 

  36. Lundt, N. et al. Magnetic-field-induced splitting and polarization of monolayer-based valley exciton polaritons. Phys. Rev. B 100, 121303 (2019).

    Article  CAS  Google Scholar 

  37. Wang, G. et al. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat. Commun. 6, 10110 (2015).

    Article  CAS  Google Scholar 

  38. Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    Article  CAS  Google Scholar 

  39. Gu, J., Chakraborty, B., Khatoniar, M. & Menon, V. M. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol. 14, 1024–1028 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)–INST 93/932-1 FUGG. The authors gratefully acknowledge funding by the State of Bavaria and Lower Saxony. Funding provided by the European Research Council (ERC project 679288, unlimit-2D) is acknowledged. T.H.H., S.K. and S.H. acknowledge financial support by DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter “ct.qmat” (EXC 2147, project‐id 390858490). T.H.H. acknowledges funding by the doctoral training program ‘Elitenetzwerk Bayern’ and support by the German Academic Scholarship Foundation. S.T. acknowledges funding from NSF DMR 1955889, DMR 2111812, DMR 1933214 and 1904716. S.T. also acknowledges DOE-SC0020653. E.S. and A.V.K. acknowledge Westlake University (project number 041020100118) and Program 2018R01002 funded by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, grant number JPMXP0112101001, JSPS KAKENHI grant number JP20H00354 and the CREST (JPMJCR15F3), JST. A.V.K. acknowledges the St Petersburg State University for research grant number 73031758.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were performed by C.A.-S. and M.W., with contributions from M.K. and T.H.H. The data analysis was performed by C.A.-S. and M.W., with contributions from T.H.H., S.K. and C.S. The Epi wafer was designed by C.S. and S.H., and grown by H.S. The device was built by M.W. Crystals were provided and customized by H.C., S.T., K.W. and T.T. The theory and simulations were performed by E.S. and C.S. with contributions from C.A.-S. and with the supervision of A.V.K. The project was supervised by C.S. All the authors participated in the writing of the manuscript.

Corresponding authors

Correspondence to Carlos Anton-Solanas, Sefaattin Tongay or Christian Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–10 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anton-Solanas, C., Waldherr, M., Klaas, M. et al. Bosonic condensation of exciton–polaritons in an atomically thin crystal. Nat. Mater. 20, 1233–1239 (2021). https://doi.org/10.1038/s41563-021-01000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01000-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing