• Letter

Profiling spin and orbital texture of a topological insulator in full momentum space

H. Bentmann, H. Maaß, J. Braun, C. Seibel, K. A. Kokh, O. E. Tereshchenko, S. Schreyeck, K. Brunner, L. W. Molenkamp, K. Miyamoto, M. Arita, K. Shimada, T. Okuda, J. Kirschner, C. Tusche, H. Ebert, J. Minár, and F. Reinert
Phys. Rev. B 103, L161107 – Published 15 April 2021
PDFHTMLExport Citation

Abstract

We investigate the coupled spin and orbital textures of the topological surface state in Bi2(Te,Se)3(0001) across full momentum space using spin- and angle-resolved photoelectron spectroscopy and relativistic one-step photoemission theory. For an approximately isotropic Fermi surface in Bi2Te2Se, the measured intensity and spin momentum distributions, obtained with linearly polarized light, qualitatively reflect the orbital composition and the orbital-projected in-plane spin polarization, respectively. In Bi2Te3, the in-plane lattice potential induces a hexagonal anisotropy of the Fermi surface, which manifests in an out-of-plane photoelectron spin polarization with a strong dependence on light polarization, excitation energy, and crystallographic direction.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 November 2020
  • Accepted 1 April 2021

DOI:https://doi.org/10.1103/PhysRevB.103.L161107

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

H. Bentmann1,*, H. Maaß1, J. Braun2, C. Seibel1, K. A. Kokh3,4,5, O. E. Tereshchenko3,6, S. Schreyeck7, K. Brunner7, L. W. Molenkamp7, K. Miyamoto8, M. Arita8, K. Shimada8, T. Okuda8, J. Kirschner9, C. Tusche9,10,11, H. Ebert2, J. Minár12, and F. Reinert1

  • 1Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, European Union
  • 2Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München, Germany, European Union
  • 3Novosibirsk State University, 636090 Novosibirsk, Russia
  • 4Institute of Geology and Mineralogy, SB RAS, 630090 Novosibirsk, Russia
  • 5Kemerovo State University, 650000 Kemerovo, Russia
  • 6Institute of Semiconductor Physics, 636090 Novosibirsk, Russia
  • 7Institute for Topological Insulators and Physikalisches Institut, Experimentelle Physik III, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, European Union
  • 8Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046, Japan
  • 9Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany, European Union
  • 10Forschungszentrum Jülich, Peter Grünberg Institut (PGI-6), D-52425 Jülich, Germany, European Union
  • 11Fakultät für Physik, Universität Duisburg-Essen, D-47057 Duisburg, Germany, European Union
  • 12New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic, European Union

  • *Corresponding author: hendrik.bentmann@physik.uni- wuerzburg.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 16 — 15 April 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×