Room temperature coherent control of spin defects in hexagonal boron nitride

A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, A. Sperlich, M. Kianinia, C. Bradac, I. Aharonovich, and V. Dyakonov


Optically active spin defects are promising candidates for solid-state quantum information and sensing applications. To use these defects in quantum applications coherent manipulation of their spin state is required. Here, we realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN). Specifically, by applying pulsed spin resonance protocols, we measure a spin-lattice relaxation time of 18 microseconds and a spin coherence time of 2 microseconds at room temperature. The spin-lattice relaxation time increases by three orders of magnitude at cryogenic temperature. By applying a method to decouple the spin state from its inhomogeneous nuclear environment the optically detected magnetic resonance linewidth is substantially reduced to several tens of kilohertz. Our results are important for the employment of van der Waals materials for quantum technologies, specifically in the context of high resolution quantum sensing of two-dimensional heterostructures, nanoscale devices, and emerging atomically thin magnets.

Our website uses cookies and Matomo to guarantee you the best possible user experience. You can find more information in our Privacy Policy.