Reciprocal skin effect and its realization in a topolectrical circuit

T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska, M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši, C. H. Lee, A. Bilušić, R. Thomale, and T. Neupert

Abstract

A system is non-Hermitian when it exchanges energy with its environment and nonreciprocal when it behaves differently upon the interchange of input and response. Within the field of metamaterial research on synthetic topological matter, the skin effect describes the conspiracy of non-Hermiticity and nonreciprocity to yield extensive anomalous localization of all eigenmodes in a (quasi) one-dimensional geometry. Here, we introduce the reciprocal skin effect, which occurs in non-Hermitian but reciprocal systems in two or more dimensions: Eigenmodes with opposite longitudinal momentum exhibit opposite transverse anomalous localization. We experimentally demonstrate the reciprocal skin effect in a passive RLC circuit, suggesting convenient alternative implementations in optical, acoustic, mechanical, and related platforms. Skin mode localization brings forth potential applications in directional and polarization detectors for electromagnetic waves.

Our website uses cookies and Matomo to guarantee you the best possible user experience. You can find more information in our Privacy Policy.